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Continuous percolation in one dimension 
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Received 25 November 1980 

Abstract. The continuous percolation problem for equal disc size in a one-dimensional 
space is treated. Exact expressions are given for the relevant functions and the critical 
exponents. It is shown that with an appropriate selection of scaling fields, this problem, as 
well as the further-neighbour discrete problem, belongs to the same universality class as the 
more common nearest-neighbour one-dimensional discrete problem. 

1. Introduction 

The percolation problem of discrete lattices has been intensively studied in recent 
years. Although many phenomena can be better simulated by continuous models (e.g. 
polymerisation and gelation), they were mostly approximated by a discrete problem, 
which is indeed much easier to manipulate. Only relatively few papers (e.g. Pike and 
Seager 1974, Fremlin 1976, Haan and Zwanzig 1977, Wintle and Puhach 1978, Powell 
1979,1980, Vicsek and Kertesz 1981) on continuous percolation have been published. 
The present note is a treatment of the simplest continuous percolation problem-the 
one-dimensional one. Like many other one-dimensional problems, the percolation 
problem may also be exactly solved. It is hoped that the solution will lead to some 
insight in higher dimensionality. The results here are not surprising, but still they are 
not devoid of some interest and are worth some discussion. 

Let us define the problem. The infinite one-dimensional space - - c ~ < x < o O  is 
randomly covered by ‘discs’ of length d with uniform probability density p, i.e. on 
average there are pdx centres of discs on an interval of length dx. A sequence of discs 
such that any two nearest neighbours overlap belong to the same cluster. Clusters vary 
by both s, the number of discs, and x ,  their size-the maximum distance between any 
two ends of discs of the cluster. It is evident that for finite clusters s 2 1 the following 
relation exists, 

1 ~x ssd ,  (1) 
where the equality holds on both sides only €or s = 1, otherwise the strict inequality 
holds with probability 1. The system percolates i f  there is a cluster with an infinite 
number of discs, s, or equivalently, with infinite length x .  (A more complicated problem 
may be defined with discs of different sizes. Though more complicated it is still 
manageable.) 
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2. Bi-connectedness function and cluster statistics 

The distribution of the disc centres (or their left or right ends) is naturally a Poisson 
distribution. The probability P(s, a )  to have exactly s centres, not necessarily belonging 
to the same cluster, in the interval [0, a ]  is 

P(s ,  a )  = (pa)3 e-pa/s 1, (2) 

P ( o ,  a) = e-Pa ( 2 a )  

and in particular, for s = 0 we obtain 

and 
m 

1 P(s, a) = 1. 
s = o  

A more interesting and relevant quantity is the bi-connectedness function c2(0, x), 
which is defined here as the probability density that given a disc centre at the origin, 
there is a disc, belonging to the same cluster, the centre of which is at x. (This is not the 
only possible and useful definition: e.g. one can substitute 'the centre of which is at x '  by 
'which covers x'.) Evidently 

m m 

c2(0, x) = C:"'(O, x) = C Y ( X 0  = 0 ,  xs = x) 
S = l  s = l  

(3) 

where c t ' ( 0 ,  x) is the probability density that between 0 and x there are exactly s + 1 
discs (including the two end discs) belonging to the same cluster. Let us calculate the 
individual c:"'(O, x), assuming x > 0. The probability density that given xo = 0, the 
centres of the next s discs to the right belong to the same cluster, and their centres are at 
0 < x l < x 2 <  . . .  <x ,=x , i s  

p S  e-""f(xdf(x2 - X I )  . . . f(x, -xS-d (4) 
where f ( x )  is the overlapping function 

Hence 

c:"'(o, x )  = p s  e-px I-, . . . / -mf (x l ) f (x2 -~~) .  . .f(x, -x,-I) dxl . . . dx,-1 
m m 

= p s  e- P x F ( ~ ,  x). (6) 
F(s,  x) is just the (s - l) multiple convolution integral in (6). It is worked out in standard 
probability textbooks (e.g. Dwass 1976), but let us work it out again briefly. q5(t), the 
Fourier transform of f(x), satisfies 

m 

d ( t )  = 5 e""f(x) dx = (eird - l)/ir. 

Hence the Fourier transform of F ( x )  is @ ( t )  = ( ~ $ ( t ) ) ~  so that 

-m 

m 

F(s,  x) = e-ixr[(eird - l ) / i t I s  dt. 
2lr -m 
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Differentiating (8) s times with respect to x, one obtains 

(-1)’ j e-ixr(eird -1)’ dt -F(s, x) = - 
dx ’ 2T 
d‘ 

- (-l)’ 2 is) (-1)s-k 5 e i t ( k d - x )  d t  
2~ k = o  k 

= f is) ( - l )k  6(x - k d ) .  
k = o  k 

Integrating (9) s times results in 

F(s ,  x) = 2 ( - l ) k ( ; )  (x - kd)’-’B(x - k d ) / ( s  - l ) !  
k = O  

where B is the Heaviside function, and specifically 

B ( x - k d ) = / ’  6 ( x ‘ - k d ) d x ‘ = { y  
for x < kd, 

-m for x 2 kd. 

It is obvious by construction that F(s ,  x) = 0 for x < 0 or x > sd and that it is 
symmetric around x = sd/2:  F ( s d / 2  - y )  = F ( s d / 2  + y ) .  Some graphs of F(s ,  x) are 
given for several s in figure 1. For large s, F(s ,  x) tends to a gaussian function: 

4 ( t )  = d eid‘’’(sin d t / 2 ) / ( d t / 2 )  = d e1d‘/2[1 - (dt)’/24 + (dt)4/1920 . . . ] 

= d exp ( idt /2)  exp [-(dt)’/24] exp [ - (d t )4 /2880] .  . . 
and 

(12 )  isdr/2 - s ( d t ) / 2 4  (4(t))‘ =d’ e e 

The higher exponents may be ignored in the first approximation. The inverse Fourier 
transform yields 

F ( s ,  x) = d ” ’ ( 6 / ~ s ) ’ ’ ~  exp [-6(x - ~ d / 2 ) ~ / s d ’ ]  =Fg(s ,  x). 

(x) = sd /2 ,  (x’) - (x)’ = sd2 /12 .  (14 )  

(15) 
which indicates that the approximation is a very good one already for moderately low s. 
It is obvious that Fg(s,  x) does not exactly vanish outside the interval [0, s], but this has 
but a minor effect for not too small s. These facts are well reflected in figure 1. 

With equations ( 3 ) ,  ( 6 )  and (10)  c2(0, x) has an explicit expression, which after some 
manipulation acquires the form 

( 1 3 )  

For Fg(s,  x), the gaussian approximation, the first two moments are the correct ones for 
all s: 

There is a slight discrepancy in the fourth moment, 

(x -(x)):xact = ( s 2 / 4 8  - s /120)d4 ,  (x - (x));aussian = s2d4 /48 ,  

00 

c2(0, x) = p’ e-” 1 ( - l )k (  I) (1x1 - kd)”-’B(/xl- k d ) / ( s  - l ) !  
s = l  k =O 
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Figure 1. Some functions F(s ,  x )  denoted by 1 and 

for s = 1, 2 , 3 , 4 ,  10. 
X their gaussian approximations F'(s, x )  denoted by 2 0 2 5  5 7 5  10 
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This expression is not very transparent. It may estimated for large x, by substituting 
x - kd by x and thus having 

~ ~ ( ~ , x ) = p ( ~ - e - ~ ~ ) e x p  (-px e P ) ,  (17) 
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from which the correlation length is determined: 

5 = ePd/p. 

A more direct, but tedious, calculation of moments yields 

c2(0, x)  dx = 2(epd - l ) ,  
a2 

1987 

(17a) 

m 

x2c2(0, x )  dx = 2p-2 epd[2 e2pd - (2 + 4pd) ePd + 2pd + (18a) 

Hence the expression of 5, given by t2 = 4 x2c2 dx/ j  c2 dx, is immediately given and 

I, 
especially for pd + 00: 

5 = Jz epd/p. 

With the aid of c:”’(O, x) some other commonly used functions in percolation 
may be obtained. 

The probability density P ( X O  = 0, x, = x)  of a cluster containing exactly s + 
such that xo = 0, x, = x is obviously 

P(xO = 0, x, = x) = p e -2pd (SI c 2  (0, x)  

(19) 

theory 

1 discs 

(20) 

(The additional factor p e-2pd with respect to c:“’(O, x) is due to the fact that here the 
occupation of the origin is not assumed, and on the other hand it is demanded that the 
intervals (-d, 0) and (x, x + d )  are unoccupied.) The probability density of having an 
(s + 1) cluster of end-to-end size x +d, and covering a given point (e.g. the origin), is 

It is obvious that 

Therefore we obtain the probability P(s + 1, p ) ,  that the origin is covered by an (s + 1) 
cluster whose length is immaterial. For s 3 0 

~ ( s  -C I, p )  = J ~ ( s  + 1, x +d, p )  dx 
m 

0 

= e-2pd {s +pd -[s +pd(s  + I)] e-”“}(l -e-pd)s-l. (22) 

Specifically for s = 0 we have 

P( 1, p )  = pd e-2pd. (22a) 

It is easily found that P(O,p),  the probability that a given point is not covered, is 
according to (2a) 

P(O, p )  = e-pd, (22b) 
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so that 

is satisfied. 

covering the origin is 
Similarly, the probability density P(x + d, p )  of having a cluster of length (x + d )  

m 

P(x + d, p )  = p e-2Pd~2(0, x)  = 1 P(s + 1, x + d, p )  
s =o 

-pd k 1 
= ( x  + d ) p 2  e-2pd f (-l)k( [(x - k d ) p  e 1 - 

k = l  ( k  - l)! 

Some of the moments of the clusters distribution are of interest: 

(s), = 1 (s + I ) P ( S  + 1, p )  = 2 epd -2-pd.  

(s2), = 6 e2pd - 8 epd + 2 -4pd epd + pd, 

(24) 

At the limit p -+ 0 one obtains (s), = pd, 

(25) 

and at the limit p + 0, (s2), = pd + 4 ( ~ d ) ~ .  The standard deviation (As), satisfies 

(26) 
2 (As): = (s2), - (s), = 2 e2pd - 3pd - (pd)2 - 2  

and 

lim (As), = pd + 3(pd)*. 
P - r O  

With the above results percolation ‘thermodynamics’ can be defined. 

3. Critical indices 

A fundamental concept in discrete percolation theory is ( n 3 ) ,  the average number of 
s-site clusters per lattice site. Similarly, a plausible definition for the continuous case is 
the average number of (s + 1)-site clusters per unit length. By equation (20) we obtain 

( n ( s  + 1)) = dx P(x0 = 0, xs = x) = p e-2Qd(l - e--pd)S. (27) 

Introducing ghost fields (Kasteleyn and Fortuin 1969, Reynolds et a1 1977), the 
modified average number is 

I 
( n ( s + l , p ,  h ) ) = p  e-2pd(l-e-pd)s(l-h)r+1. (28) 

The corresponding Gibbs potential is 
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The probability P(p, h )  that an occupied point belongs to an infinite cluster is 

Finally, the average site number on a finite cluster is 

The percolation threshold pc is the density where the above functions are singular. It 
turns out that they are regular for any finite p ,  A singularity is manifested only at h = 0, 
p + w ,  as expected. At this limit, the thermodynamic functions are to the first 
non-vanishing order: 

G(p, h )  + p e-2pd/(e-pd + h ) ,  G ( p ,  0) .+ P e-pd, 

~ ( p ,  h ) + h ( h + 2  e-2pd)/(e-pd+h)2, P(P, 0) = 0, P(P, h f 0) + 1, (32) 

~ ( p ,  h )  + 2/(e-Od + h ) ,  ~ ( p ,  0) + 2 epd. 

These functions are not homogeneous, or even generalised homogeneous by the 
strict definition. Nevertheless, critical exponents may be defined (e.g. y = 
limp-+m In S(p,  O)/ln p = a), and the results are 

( Y p  = 03, P p  = 0, Y p  = Co, 8, = Co. (33) 

These results convey but little information. A better way to treat the problem is to 
homogenise the functions by a transformation r = ePd,  and also define (n,) as the 
average number of clusters per disc rather than per unit length. Thus we have 

G(r, h )  = r2/(r  + h ) ,  

P(r, h )  = h(h  + 2r)/(r + h)', P(0,  h )  = 1, (34) 

S(r, h )  = 2/(r + h) .  

The critical value for the new scaling field is rc = 0. With this field, the newly defined 
critical exponents are 

(Y = 1 ,  P =o ,  Y = l ,  s =Co.  (35) 

They are defined by E = r - rc = r and 

G(r, 0) = P(r, 0) = ( - E ) ' ,  S(r, 0) = E -', P(0,  h )  = h'". 

These results coincide with the well known results for the discrete one-dimensional 
problem, so that the continuous problem belongs to the same universality class. 

Let us also define the correlation length exponents. Equations (17) and (19) 
transform to 

(1 - r), 6 = vb r-'d/lln rl, (36) e-rlIn r lx ld  
cz(0, X, r) = (Iln rl/d) 

from which we obtain 

v = l ,  77 = 1, (37) 

where cZ(0, x ,  r) = e-X/'/rD+"-2, 5 = r-' and D is the dimensionality. These results are 
obtained again by generalising v = -1im (In [)/(ln r). Alternatively 6 and x may be 
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measured by 'mean distance between disc centres', l / p ,  so that the expression of 5 
would also be homogeneous in r : 

6 = J5 r - ' .  (36') 

5 (of equation (36) or (36')) and G (of equation (32) or (34) respectively) satisfy the 
condition that GSD is constant, which is consistent with Aharony (1980). 

The behaviour of ( n ( s ) )  at E = r << 1, h = 0 is given by properly transforming 
equation (27), 

( n ( s ) ) / p  = r2(1 - r)' = r2  e-rs = s-'(rs)' e-',, (38) 

( n ( s ) )  = s - T f ( & S u )  with r = 2  and (+= 1, (39) 

which agrees with the scaling form suggested by Stauffer (1975a, b, 1979), 

as has already been obtained for the discrete lattice (Reynolds et a1 1977). 
The choice of edpd as the scaling field is to some extent arbitrary. But a similar 

choice has already been made in the one-dimensional Ising problem (e-K is chosen as 
the scaling field). The critical indices are, of course, influenced by this arbitrariness and 
may all have been multiplied by a constant, had another scaling function been chosen. 
This is peculiar to any transformation of the field which is not linear at the critical point. 
A very similar arbitrariness was pointed out recently by Klein et a1 (1978), treating the 
one-dimensional discrete problem with further-neighbour bonds. Their results for y, 
2-CY and Y were the universal ones multiplied by L (the number of interacting 
neighbours from each side). These values are obtained when the scaling field is p ,  the 
occupation probability. In fact, an equally good choice would be q = 1 - p  in the 
nearest-neighbour problem, q L  in the further-neighbours bond problem and e-pd in the 
continuous problem-all are the respective probabilities that an occupied site is at the 
(right) end of a cluster, and thus universality is preserved and the indices are indepen- 
dent of L. 

It is intuitively obvious that the continuous problem is obtainable as a limiting case 
of the further-neighbour bond problem with L + CO, but let us derive it mathematically. 

Let us begin with the common lattice with the elementary cell of size d and sites at 
the lattice points, and with nearest-neighbour interactions of range d. Let us divide 
each cell into L subcells, with an occupiable site at each subcell end, and still preserve 
the interaction range d. This is the L further-neighbour problem. A result which is not 
explicitly written in Klein et a1 (1978), but is evident there, is that for h = 0 

(40) L s-1 ( n , ) = q 2 L p ( l - q  1 . 

(n,)  = ( p d / ~ )  e-2pd(I -e-pd)s-l. 

In the limit L + 03, p = p d / L  with fixed p, we obtain q L  = (1 - p d / L ) L  + e-pd and 

(41) 

This result coincides effectively with our equation (27). 
The discrepancy by a factor of d / L  is a result of different definitions of ( n s ) :  as 

number per site in (41) and per unit length in (29). There is however one exception to 
this analogy-for the singular case p + 03. Here there are two limiting processes, p + CO 

and L 3 CO, which are not exchangeable, and may cause some difficulties in pursuing 
some problems, such as the space points renormalisation group. This method was 
successfully applied (Reynolds et a1 1980) also to the L further-neighbour bond 
problem. However, it comes out that the result for Y is ambiguous when this method is 
applied to the continuous problem. This may have been anticipated, because already 
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for large L in the discrete problem the convergence of the results is slow. This kind of 
difficulty is, of course, peculiar to the one-dimensional problem with the singular critical 
values p + CO or r -* 0. For the more interesting problems of higher dimensionality no 
such difficulties are expected, and the large-cell renormalisation group method may be 
fruitful there. 
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Note added in proof. A very recent work by E T  Gawlinski and H E Stanley (1981), private communication 
should be added to the list of papers concerning continuous percolation. It seems to contain very good 
estimates of critical values for the two-dimensional system. 
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